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ON THE POSSIBILITY OF RESONANCE STABILIZATION OF 
A SYSTEM OF OSCILLATORS* 

L. G. KHAZIN and G. G. KHAZINA 

It is shown that resonance stabilization is possible in the case of interaction 
between two unstable oscillators with equal frequencies, i.e. when a resonance is 
"switched-on" the instability is superseded by asymptotic stability. This effect 
cannot occur for no other relation between frequencies. 

1. Statement of the problem. We consider the problem of equilibrium position of 
a system of two linear oscillators linked by the strong nonlinear relationship 

fj (0) = gj (0) = 0, j = 1, 2 

where the expansion in Taylor series of functions f and g begins with quadratic terms, and 
functiong, contains only cross terms. 

It was shown in /1,2/ that in the absence of resonance between frequencies o1 and o2 
the equilibrium position of system (1.1) can be asymptotically stable only when each of the 
oscillators is stable. Indeed, the shortened standard form of system (1.1) is 

Zj' = iWjZj + Zj [Aj, 1 Zl 1 ' i- Aj, (Z2 1 "I (1.2) 

and the asymptotic stability criterion stipulates the simultaneous fulfillment of the follow- 
ing three conditions: 

au = Re Au < 0, az2 = Re & <O (1.31 

A = %,a,, - %u2r > 0 for aI2 > 0, azl> 0, aij = ReAij 
of which the first two ensure the asymptotic stability of each oscillator. 

Let us consider the question whether the equilibrium position of system (1-l) is possible 
when one or both oscillators are unstable. The above exposition implies that this is only 
possible when there is resonance of frequencies. Since a system with resonance of the fourth 
or higher order is asymptotically stable or unstable simultaneously with system (1.2) (see 

/3/f, "resonance stabilization"is possible, if at all, only when the frequency ratio is 1:3 
(02 = 30,) or 1: 1 (& = ol) (note that when this ratio is 1:2 (wp = 'o,), the equilibrium posi- 
tion is unstable /4,5/). 

It was previously shown ( **) that, when the first of conditions (1.3) is violated, a 
partial resonance stabilization of system (1.1) is possible. Namely, although system (1.2) 
is unstable when a,,>O, the complete resonance system (1.1) may become asymptotically stable 
when resonance 1:3 is "switched on". A fast oscillator stabilizes the instability generated 
by the slow oscillator. The necessary condition for asymptotic stability of the considered 
resonance system is a,,<O. 

The question of feasibility of resonance stabilization of system (1.1) when each oscil- 
lator is unstable, remained open. It will be shown in Sect.2 that such stabilization is 
only possible when the frequency ratio is 1:l. 

Insects.3 and 4 the stability problem is considered from a more general point of view. 
Let matrix A of the fourth order linearized system 

s' = F (2). F (0) = 0 (1.4) 

have two pairs of pure imaginary eigenvalues 
h 1,z L :t iw,, h3,& = i i0,; w2 =- w, 

Under such conditions the Jordan form of matrix A, as a rule, contains the cell 

ji yf -‘ii0 /( 

* Prikl.Matem.Mekhan.,44,No.4,660-666,198O 

**)Khazin, L. G. and Shpol', E. E., Investigation of asymptotic stability of resonance 1:3. 
Preprint No.67, Inst. Appl. Math., Akad.Nauk SSSR, 1978. 

466 



On the possibility of resonance stabilization 461 

The problem is of codimension v = 3 and the equilibrium position is unstable(*). If 
matrix A is diagonal (v= 4) the stability problem cannot be algebraically solved,(**) con- 
sequently, simple, readily checked necessary as well as sufficient stability conditions be- 
come important. Such conditions are derived in Sects.3 and 4 of the present paper. 

2. Two examples of resonance stabilization. Let us consider two oscillators of 
equal frequencies o1 = o1 = m linked by the strong nonlinear relation 

21' = im.% + 21 I-411 I z1 I z + A@ I z2 121 + B, I Zl 1% + Bzz1% + B.?Z, I z, p + B,%G2 (2.1) 

z2’ = ioz, + z2 [AtI 1 z1 12 + A,, 1 zz I21 + B,zl I z1 1’ + BB ~1 I zz I2 f B7 ZI*% + &%zz2 

where A,, and B, are complex numbers Ali, = ejli + icjk and B, = bjeivj, and b,>O. System (2.1) 
must be supplemented by two conjugate equations. 

lo. Let us show that the equilibrium position of (2.1) can be asymptotically stable, 
even when a,,>0 and a,,>0 on the following problem of two symmetrically linked oscillators. 
We select the coefficients of system (2.1) of the form 

AU = A,, = 1; AI, = A,, = -91 i 3; B1 = BB = 17313, B, = B, = 1; B, = B, = -42; Bh = B, = 0 (2.2) 

Function 
L = I Zl I2 + 1% 12 + '1, (Z,z, + ZIZ,) 

(2.3) 
is the Liapunov function of system (2.1), (2.2). 

Indeed, setting zk = v/pxei%, II, = mz _ m, we obtain 

L = pI $- pa + Re (I/Ge-i+) >(l/pl - l/p2 i 2)' + 3/@~ > 0 
By virtue of (2.1) and (2.2) we have for dLidt 

‘i,L’ = -20 (PI2 + h2) - 2P,P, -I- 2 (PI 4 PJ I/P1Pncss 4 < -19 (PI2 + Pz2) < 0 
Hence the equilibrium position of system (2.1), (2.2) is asymptotically stable. 

Remarks. a) A more general reasoning which yields as a corollary the considered here 
Liapunov function appears in Sect.3; b) (2.3) is a Liapunov function for the complete system. 
The asymptotic stability of the complete system also follows from the general theorems on 
homogeneous systems /6/. 

20. The nonresonance link may prove to be such that system (1.2) is unstable when each 
of the oscillators is stable, i.e. when ~~(0, 
a21> 0. 

a?, < 0 and a11a22 - amazl -C 0 for a12 > 0 and 

We shall prove this on an example that in this case with 0% z m1 it is possible to stab- 
ilize the system 

zl' = iz, - 716 z1 1 z, I2 + ilz, ) z2 I2 - 673 I z1 j2z2 - Z,z2* 
zI' = iz, + 651 zz 1 z1 I2 - IOz, I z2 1% - 1412 z1 I z1 1% 

(2.4) 

for which the Liapunov function is 

L=21z,12+ I~z12t~lZB-t~,22~p1+(1/~-~~)*>0 

1.‘,L’ < -2Op," - lop,2 - 2p,p, cos 2* + p11/z2 COS$ < -'/? (39p,2 -I- 2Op,P - 5 p,pJ <o 
3. The necessary conditions of stability. The stability of system (2.1) is 

equivalent to the stability of the following third order system derived from (2.1) by passing 
to polar coordinates pk,(pk (k = 1,2) using formulas zh. = I/phe@k; $I = 'ps - rpl, pk 2 0: 

ph.' = 2 I%APk2 + QkP,P, + vrPIPB(F1@k i P2Yk)l 
(3.1) 

T. = PPI + m, + s I/p1p2 + 

pI-’ -pz’,: I-b,p12 sin (I& - q5) - b,p,2 sin (I& + &)I 

Q, = a,, + b, cos (‘& + $h); % = a,, + b, cos (29 - %) 

CD, = b, cm (I$ f $1) i- b, ccc (I# - &); a$ = b, cos (9 - q5) 

Y, = b, cos (11, + $J)> Y, = bg ~0s (Q - $8) + bs ~0s (11, + $8) 
P = czl - cl1 - b, sin (Q - qi) 

R = cz8 - cl2 - b, sin (2s + $) 
S = --b, sin ($ + Q1) + b, sin (I$ -t 0.J - b, sin (@ - $&+ 6, sin (g+g.J 

*) Khazin, L. G., On the resonance instability of equilibrium position at multiple resonance. 
Preprint No. 97, Inst. Appl. Math., Akad. Nauk SSSR, 1975. 

**) Khazina, G. G. and Khazin, L. G., The nonexistence of an algebraic criterion of asymptot- 
ic stability at resonance. Preprint No.112, Inst. Appl. Math. Akad. Nauk SSSR, 1977. 



468 L. G. Khazin and G. G. Khazina 

Then using the homogeneity of the obtained system with respect to p, and P?, and in- 
troducing coordinates H and e (O< R < co,O< e < n/Z?) 
and dr = Rdt F we obtain 

by formulas p1 = R cos 8, p% = R sin 9, 

d In R / dT = 211 (e, 9) = 211, (e) _1- 2rI, (e, Q) (3.2) 

de i dr = g(o, *) = g, (8) -.- g, (e,*), &*21i! dr = f(e, 9) = fl ie) + f, (e,q 

HI = al, co9 e i- a,, cos2 e sin e + ap1 COS e sin2 e i- Qz2 sin 38 

II, = cos':ze sin"+ [n,, c0See -i- II,, sin28 -/ II,, cos 8 sin 0) + 

cos e sin e [b, cos e cos (214 i- q4) i- b, sin e cos (29 - +,)I 

n,, = b, cOS (li,i- q,) i- b,coS($ -@Jr II,, = b, cos (J- - qa)+ 
bs ~0s ($ -t-q& n,, = b, coS ($ + $3) -.I- b, ~0s (II, - ~5) 

gl = COS e Sin e I(+, - Qxl) COS e -I- (Uaz - f&,) Sin e] 

g, = cos e sin tl Lb7 cos e cos (2$ -Q,) - b4 sin 0 cos (24 -i_ 

&)I + FOS'!* 8 sin"2 0 [b, co9 e cOs(q --q5) + sin I3 eos eg,, - b, sin2 0 ces (9 + ,Q] 

g,, = bo cos (21) - qt,) + bs cos (q -1. +s) - bl cos (I& + ‘4’1) - b, ~0s (Ir, - $2) 

h = (czl - caI) CDS e + (c,, - cl:) sin e 

f2 = -b, cos 0 sin (211, - $,) - b4 sin 8 sin (a$ + IJ~) - 
sin-'/* 0 COS-'h 8 lb, CO? e sin (1~, - &) + f 11 sin 0 COS 0 - b, sin2 e sin (+ + qs)] 

k1 = -bl sin (211 + $1) + b, sin (4) -t &) - b6 (9 - %) -t- b, sin (9 + qB) 

The equations in terms of angles in the equations for 0 and $ constitute an independent sub- 
system, hence, when e(z), ?@((-c) is its solution, then 

(3.3) 

Theorem. Let Ok and $k be nondegenerate solutions of system f (e, QJ = g 64 9) = 0 
that is algebraic in sin e and COS e. Then the necessary condition the asymptotic stability 
of system (3.1) for all k is that lX(e,,$)k)< 0. 

The proof of this directly follows from formula (3.3). 

Corollary. Even if only at one stationary point (itk,q\l). we have II (8,, &ii) > 0, the 
equilibrium position of system (3.1) is unstable. 

Remark. Instability of the complete system instability (when the conditions of the 
theorem are satisfied) is implied by the existence of Chataev's function in the neighborhood 
of the growing solution (*). 

4. The sufficient conditions of stability. Sufficient conditions of stability 
can be obtained by requiring that some homogeneous polynomial be a Liapunov function. Even 
the examination of the simplest second order polynomial as a possible Liapunov function yields 
nontrivial sufficient conditions, which were used in Sect.2. 

Lemma. If system (2.1) admits a Liapunov function of the form 

z, = k 1 .z, jB -I- 1 z2 / z _i- f+Z3? f a,,Z,2 + fzZ8z1.z2 -I iilzZIBs -i- CZ,Z, -1. F&z, $ ff22zp2 f f?,2Z~2 14.1) 

that system also admits the Liapunov function 

L, =: k 1 z, I2 + j z2 1 2 + czlZc -+ i;Z,z, (4.21 

where k>O is real, and a*f and c are complex numbers. 

Proof. If 21 (h 12 (I) is a solution of system (2.1), then e%, (t), e%, (I) are also its 

solutions and, consequently, L(e2a~l,e'aX2) is the Liapunov function of system (2.1). Then 

is also the Liapunov function of that system. 

*) Shnol', E. E. and Khazin, L. G., On stability of stationary solutions of general systems 
of differential equations close to critical cases. Preprint No. 91 of the Inst. of Appl. 

Math., Akad. Nauk SSSR, 1979. 
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Let us determine the conditions for k and C =cl f i% under which L, is a Liapunov func- 

tion. Denoting Ic I* = co2 and assuming c,,"< k we find that the quadratic form (4.2) is 

positive definite, i.e. 

L, = (I/&l - co1/pz ! k)2 + pz (1 - Co'/k) > 0, pj = Izj I2 
Let us stipulate (dL, / dt)~,.~, < 0. Omitting intermediate calculations, we obtain 

(G / dt) l(21) = 2Pz2P* (s); * = Pli Pz > 0 (4.3) 

P,(s)==as2+bx+d; a=a+V, 1/P+@ 

b = y + 1/A2 + B* + ‘i, (l/C2 + D2 + f/E2 + F*), d = p + ‘,‘z r/E” + F2 

01 = ka,, + b, (cl cos+, + c2 sin &), p = ax2 + b, (c, cos & - 

c2 sin W, y = kalz + az1 i b, (cl cos q1 - cg sin ql) + 
b, (c,cos $+, + c2 sin g8), A = kba cos qip + b, cos 0, + 
cl (b, c,os $ + b,cos gs) + c2 (bs sin Q8 - b, sin $J 

B = -kba sinQ4 $ b7 sin $, j c1 (b, sin I& + bs sin g8) + c2 (b, cos Q2 + bs cos$~) 

C = k (b, cos $1 + b, cos $2) i- b, cos & -+- cl (alI + a2,) + 

cz (~1 - CIJ + b, (cl cos $7 + c2 sin %) 

D = k(b, sin $ -bb, sin 91) + bl(cl sin Q, - c2 cosq,) $ 

bs sin I!J~ + CI (G - CA + c2 (all + a.~ 

E = kb3 cos Q3 -t bti cos q6 + b, cos Qs i- cl (aI, + a& + c2 (czI - c12) - b, (cl cos $a - c% sin $Q 

F = -kb, sin I& I_ be sin q0 - b8 sin+, + ~1 (cIz - czz) + c2 (an, + a,*) - b4 (~1 sin % + c2 ~05 VJ) 

if forx> O,P,(~).<O,h~isa Liapunovfunction.The inequality P,(x) < O(x>O) is satisfied under 

the following three conditions: 1) a<& 2) d <o; and 3) either the roots of pz(r) are 

negative (P2* (0) = b <O) or there no real roots (b2 - 4ad<O). 
Let us formulate the sufficient conditions for stability. Let 

L, = k 1 z1 la + 1 za la + cz,z, + Ez&, P, (5) = a (k, c)2 + b (k, c)z + d (k, c) 

and 
I, = {k, c : a > 0); I, = {k, c : d <0}, I, = {k, c : b < 0 V bs - 4ad < 0) 

Theorem. The equilibrium position z = 0 of system (2.1) is asymptotically stable, if 

11 n (12 u 1,) f @. 
Examples of use of this theorem were given in Sect.2. 

5. Limit situations. lo. Small coefficients at resonance terms. 
Theorem. If for fairly small E>O, IBj I <E, system (2.1) is asymptotically stable 

or unstable simultaneously with system (1.2). 

Proof. a) If the asymptotic stability criterion for system (1.2) is satisfied, that 

system has a homogeneous Liapunov function L. It follows from the general theorems on homo- 

geneous system stability such L is a Liapunov function also for system (2.1) when e is fairly 

small /6/. 

b) Let the equilibrium position of system (1.2) roughly unstable, i.e. when at least one 
of the stability criterion conditions is violated. Then the angle subsystem of system (3.2) 
when hj= 0 has a nondegenerate stationary point (%, %), i.e. 

f = (%, $0) = g(Bo, 00) = 0: d (1, g) id (8. 'N IR~,~~ =+ 0, D @,, $0) > h > 0 

Hence, when E is fairly small, the algebraic system /CO, $)= g(e,q)= 0 has the solution 

(0~ '#lo) and II (& $I,~) > I/ z > 0. The theorem in Sect.3 ensures under such conditions the 

instability of system (3.2) and of the complete resonance system. 

for 

2'. Large coefficients at resonance terms. 
fairly small e system (2.1) is unstable. 

Theorem. If Bj = Bj'a-l, then 

Proof. We introduce in system (2.1) the new time dt= &df,, and obtain 

dil / dt, = E iq + ml [A,, I q 1% -I.- A,, I z2 I *I + S,' 1 z1 I %z + B,‘zlaZs + B,‘z, 1 z2 1% + B,‘;&- (5.1) 

dz, / dt, = E~~ZZ + EZ@Z, I z, 1' + A,, I z2 121 + ~5' 1 z1 1 *tl + Ba' z1 I zz 12 + B,'z~%~ + B 'Y z 2 8 12 

Let us set E= 0. Then the obtained system is roughly unstable, since the angle subsystem of 

system (3.2) (when ai, = 0) has a nondegenerate stationary point (O,,$,), i.e. f(%,%) = g(%, 9’0) = 0 
and D (Bo, to) > h > 0. 

Because of this, for fairly small E the algebraic system l(e, q) = g@,$)=O has a steady 

solution (em, QlO) and D (&, +10) > hl 2 > 0. The theorem in Sect.3 ensures in this case the in- 

stability of system (5.1) and, by the same token, that of system (2.1). 
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